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OBJECT IVES

The objectives of my research this summer were

io To present a series of informal talks covering general

topics in the area of artificial intelligence.

• To concentrate in particular on the subject of expert
systems, with an emphasis on their possible usefulness

and practicality in scientific applications

This report will summarize some of the findings on expert

systems.
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INTRODUCTION

The emergence in recent years of expert systems as a

new kind of computational tool is a trend that deserves

close examination by every organization that uses computers

for problem solving. To evaluate the utility of expert sys-

tems prospective users must understand what these systems are,

how they are structured, and when they can produce beneficial

results.

Briefly stated, an expert system is a computer program

that attempts to reproduce the problem-solving behavior of

an expert. Experts do not generally rely on domain axioms

and principles when solving a problem. Instead, they

tend to employ ready-made or empirical "know-how", compiled

from past experience. They are able to view problems from a

broad perspective and arrive at conclusions rapidly, using

intuition, shortcuts, and analogies to previous situations.

This experiential knowledge is called heuristic knowledge, and

is what differentiates the expert from the merely competent.

Expert systems are a departure from the usual artificial

intelligence approach to problem solving. Researchers have

traditionally tried to develop general models of human

intelligence that could be applied to many different situations.

Expert systems, on the other hand, tend to rely on large

quantities of domain specific knowledge, much of it heuristic.

The reasoning component of the system is relatively simple and

straightforward. For this reason, expert systems are often

called knowledge based systems.

The body of this paper will attempt to expand on the ideas

outlined above. Section 1 will explain the architecture

of a typical expert system. Section 2 discusses the

characteristics that mak_ a problem a suitable candidate for

expert system solution. Section 3 surveys current technology,

describing some of the software aids that are available for

expert system development. Section 4 discusses the limitations

of this technology. The concluding section will attempt

to predict future trends.
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I. EXPERT SYSTEMCOMPONENTS

Expert systems have three major components: a
working memory, which contains facts about the current
problem; the knowledge base, an integrated body of domain
facts, heuristics, and relationships; and the inference
engine, which is the reasoning and control mechanism.
This organization is derived from earlier studies of
production system models, which were originally proposed
a general computational mechanism. [Davis and King, 84]
Production systems consist of a data base, a set of rules,
and a rule interpreter. They have been used for a variety
of purposes, including compiler construction, formal
language theory, and psychological modeling of human
cognitive processes. Early expert system designers saw
production systems as an elegant formalism for representing
the mental activity of expert problem solvers.

Working Memory

Working memory corresponds in some ways to the

data storage area of conventional programs. It is

empty until a problem is proposed. At that time, the

initial problem description and data are entered,

perhaps by means of a consultation between the program

and the user. As the program works toward a solution,

additional facts are inferred or provided by the user.

These are stored in working memory as well, as are any

intermediate results concluded by the reasoning process.

Knowledge Base

The knowledge base is arguably the most important

part of an expert system. Its structure is more com-

plex that that of the working memory and its develop-
ment is a collaborative effort between the domain

expert and a knowledge engineer. The knowledge engi-

neer is a trained professional whose responsibility is

to help the expert express his know-how verbally.

This is a difficult task, since one characteristic of

expertise is the ability to solve problems without

following a conscious step-by-step procedure. Once the

knowledge is verbalized it must be encoded in some form

and run on sample problems. If the solutions do not

agree with the expert's solutions to the same problems,

the knowledge must be modified. Thus, development of the

knowledge base is an iterative procedure.

XXVIII-3



How the knowledge is represented is an important con-
sideration. Heuristics are most commonly described by a
set of production rules which have the format
IF (condition) THEN (action). Rules are a convenient
method of encoding "chunks" of knowledge, and are
thought by many cognitive scientists to reflect the
way the human brain organizes information. Rules are

"triggered" when their conditions are satisfied by facts

from the working memory. Once triggered, a rule may be

"fired" by the inference engine. When a rule fires, its

action causes a change in working memory, possibly trigger-

ing other rules in the process.

Domain facts can be represented in a number of

different ways. Object-attribute-value (O-A-V)

triples were used in many of the early systems. An

object can be either a physical entity or a concept.

Attributes are the general characteristics that de-

scribe an object, and values identify a specific

instance of the object. For example the object "ball"

might have attributes "size", "shape", and "color". A

specific ball could then have descriptive attribute values

such as "size" = "large".

Frames or units provide another way to describe

objects. A single frame represents an object and contains

a number of "slots". Slots are similar to, but more

general than, the attributes in O-A-V triples. Two

special slot types, superclass and subclass, provide a

method of structuring factual information into a hierarchy.

The object "ball" might be a member of the super-class

"toys" and have as subclasses "baseball", "football",

"golfball", etc. In the absence of knowledge about a

particular object's attributes, values may be inherited, or

passed down by default, from the frame which defines that

object's superclass.

Logic programming languages such as PROLOG are

another approach to knowledge representaion. Rules

are expressed as logical propositions and facts as

assertions. Built-in language features are then able

to reason with this knowledge.

Inference Engine

The inference engine's reasoning processes are

based on formal logic. In a simple production rule

system the inference strategy is usuallly a variation

of the modus ponens principle, which states that if
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the conditions of a rule are satisfied, then it may be
inlerred that the result is also true. To illustrate,
assume that a knowledge base contains the rule
"If a person is a secretary then that person can type"
and that the working memory contains the fact
"Martha is a secretary". From this it is logical to

conclude that Martha can type.

Systems which are built on logic programming

languages use more sophisticated proof techniques

based on the predicate calculus. These techniques are

provided as standard control mechanisms in the langu-

age, much as DO-LOOPS are provided by FORTRAN.

Human experts often solve problems in situations

where information is missing or uncertain. Conse-

quently, inference engines should also be able to

operate with incomplete data. To provide this capa-

bility most systems include facilities which allow

users and knowledge engineers to tag facts and rules

with certainty factors. Special combining rules

enable the system to infer conclusions which are

similarly qualified.

The control portion of an inference engine
determines which rules will fire and the order of their

firing. There are two basic control strategies:

backward chaining, or goal directed, and forward

chaining, or data driven. Both depend on the fact

that the rules in a rule-based system form a hierar-

chical structure, with paths through the hierarchy

from initial facts and conditions to conclusions.

Backward chaining is appropriate when a problem has

a few well defined solutions (goal states). The system

selects a tentative goal or hypothesis, perhaps based

on some external priority, and examines its conditions.

If working memory contains these conditions as facts,

then the goal is established. Otherwise, the condi-

tions will in turn be the goals of other rules and

the system will try to establish them. By following

this procedure repeatedly, the inferencing process
can work backwards to the initial facts of the case.

If the first goal selected cannot be proved, the

system will select another and try again.

FOrward chaining is a more complex procedure but

is appropriate when there are many possible goal

states, or when the goals are poorly or incompletely

defined, as in planning situations. In this strategy
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the rule hierarchy is traversed from initial facts
to goals. The contents of working memory are compared
to the condition clauses of rules and those rules
whose conditions are satisfied are eligible to fire,

thus modifying the contents of working memory.

Repeated applications of this "recognize-act" cycle

will eventually produce a solution.

An immediate consequence of the system architec-

ture outlined above is that expert systems are rela-

tively easy to modify. Because the knowledge base is

completely separate from the control structure it can

be developed incrementally. As knowledge in a domain

increases or changes, rules can be added or modified.

In fact, it is feasible to replace the entire know-

ledge base with one from another domain, since the infer-

ence engine is not problem dependent. This is the basic

principle underlying the concept of expert system shells.

The algorithmic structure of conventional programs, on

the other hand, does not lend itself so readily to

change. Knowledge and control are closely integrated

in the program code and changes in one facet of the

program frequently require changes in the other.

User Interface

One final aspect of expert system design is the

user interface. Most expert systems are based on a

consultation paradigm, where the user supplies the

initial problem parameters in response to a series of

questions proposed by the program. At certain points

during execution the system may ask for additional

Information. Under ideal circumstances this dialogue

would be conducted in natural language, but since

natural language processing is not yet a mature

technology it is more common to find restricted forms

of communication based on menus or one word responses.

A few systems are able to process English language

responses within a very limited area, but this is the

exception rather than the rule.

Explanation facilities are included in many

expert systems. If the user wonders why a particular

question was asked or how a conclusion was reached,

he can interrogate the system directly. Explanations

are usually little more than straightforward transla-

tions of the rules which are currently under consid-

eration, and do not attempt to offer a deeper
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rationale. Nevertheless, the ability of an expert system
to justify its own actions is considered by many people
to be a valuable feature, and is one of the characteristics
that distinguishes expert systems from traditional programs.

2. APPROPRIATE PROBLEMS

Not every problem is a good candidate for expert

system solution. Conventional computational techniques

are still preferable in situations where clearly de-

fined procedures, or algorithms, are available. Expert

system technology should only be considered when one or

more of the following conditions is present:

The task to be performed is usually handled

by an expert who uses heuristic rather than

algorithmic techniques.

The task is combinatorily explosive. There

are so many conditions and complex inter-

actions involved that even experienced

human experts have difficulty considering

all of them.

The task is qualitative rather than quanti-

tative, involving symbolic rather than

numerical manipulations. Solutions may be

subjective or judgmental in nature.

In addition to the above factors which characterize the

problem domain, the current state of expert system

technology imposes further restrictions. There must be

at least one person, expert in the task domain, who is

able to explain his expertise and problem solving

techniques. The domain itself must be relatively

narrow and well defined. Improvements in machine

learning and knowledge acquisition methods may at some

future date enable these restrictions to be relaxed.

Successful expert systems have been developed in

a variety of fields, from medicine to engineering. An

examination of the task domains reveals that the appli-

cations fall into a few broad categories, identified by

function. A discussion of several of these categories

will further serve to illustrate the range and applica-

bility of expert system technology.
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Diagnosis/Classification

Problems in this area try to identify a particular
object or situation as being a specific instance from
a set of possible situations. Identification is based
on a group of "symptoms" provided by the user. Many
diagnostic programs prescribe remedial action once the
situation is identified. Typical applications include
medical diagnosis and fault diagnosis in various kinds
of systems.

MYCIN, developed as part of the Heuristic Programming
Project at Stanford University, [Buchanan and Shortliffe, 84]
is an excellent example of a medical diagnostic program.
Its purpose is to identify bacterial infections and then
prescribe an appropriate antibiotic treatment. This is a
hard task, even for experienced diagnosticians. The physician
must first decide if a significant infection is present and
then identify the particular organism (or set o£ possible
organisms) which is responsible for the infection.
Finally, a suitable combination of drugs must be chosen
to treat the disease. It is frequently necessary to
make these decisions based on fuzzy and incomplete data;
thus, good judgment is an essential component of the
decision process.

MYCIN works as a backward chaining system. An
initial hypothesis, based on preliminary patient data,

is selected and guides the program in its consultation

with the physician. Once the most likely organisms are

identified, the program prescribes a drug treatment.

Certainty factors attached to the action portion of

rules enable the system to reproduce the judgmental

behavior of domain experts.

DELTA (Diesel-Electric Locomotive Troubleshooting

Aid) [Harmon and King, 85] was developed by the General

Electric Company, Schenectedy, New York, to assist railroad

personnel in the maintenance of diesel-electric locomotives.

In addition to locating mechanical faults DELTA provides

diagrams showing the faulty components and can, if

requested, show training films which instruct maintenance

personnel in the necessary repair procedures.

Planning

Planning problems are constructive in nature,

unlike diagnostic programs, which have a fixed set of

possible solutions built in. Plan generation may be
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described briefly as follows: Given a task and the
current situation, decide how to perform the task.
[Charniak and McDermott, 85, p. 487] By decomposing the
initial problem into subtasks, perhaps down through
several levels, the system eventually identifies a set
of elementary tasks whose solution plans are built into
the system. It can then construct a master plan based
on these subplans. Usually, constraints of various kinds
must be incorporated into the planning process.

One of the best known planning programs is RI,
sometimes known as XCON. Pl was developed by John
McDermott [McDermott, 81]. It is used regularly by
Digital Equipment Corporation to configure VAX computer
systems. There are no standard VAX systems; instead,
customers choose from a list of several hundred components
which must then be arranged to conform to physical constraints
imposed by the components themselves, the size of the area
in which the system is to be installed, and other considera-
tions. Due to the complexity of the systems and frequent
modifications to the data base, the problem is difficult and
time consuming even for experienced personnel. R1 has reduced
system configuration time from hours to minutes, with a
savings to the company which is measured in millions
dollars.

The MOLGENprograms are equally successful in an en-
tirely different domain. Their purpose is to design experi-
ments for molecular geneticists to use for analyzing DNA
molecules. Originally developed at Stanford University, MOLGEN
has evolved into GENESIS, a package of several expert systems
available from IntelliCorp (formerly IntelliGenetics). Users
have the option of accessing GENESIS through a time sharing
system or as a program to run on a LISP machine. [Harmon and
King, 85]

Intelligent Instruction

Traditional computer-aided instruction consists of
little more than an electronic textbook or training
manual supplemented by question and answer drills. In
contrast, intelligent assistance can be provided by
embedding the knowledge bases of expert systems into
larger programs. In addition to expert domain knowledge,
intelligent tutors must contain teaching expertise and
some way of interacting with the student.

GUIDON, developed by William Clancey at Stanford,
was an early attempt to adapt an expert system for
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instructional purposes. [Clancey, 82] It uses the
knowledge base from MYCIN augmented by some two hundred
additional rules which outline teaching strategies, methods
of communicating with students, and explanation techniques.
GUIDON has been used experimentally to train medical stu-
dents at the Stanford School of Medicine.

Other instructional programs, notably STEAMER

[Harmon and King, 85] and SOPHIE [Brown, 82], while not true

expert systems, are still able to provide intelligent

guidance to students by employing many of the techniques of

knowledge engineering. STEAMER is being developed by the

Naval Research Personnel Development Center in conjunction

with Bolt Beranek and Newman. Its purpose is to train

naval officers to run the steam propulsion plants in naval

ships. SOPHIE tutors students in the art of troubleshooting

electronic devices. Both programs use sophisticated simula-

tion models of the systems being taught. Students are

allowed to change the simulations interactively and observe

what happens as results of the changes are propagated through
the model.

Search

Occasionally expert systems are used in domains

where algorithms are also available. Typically, these

are "generate-and-test" algorithms. They provide a method

of systematically ennumerating candidate solutions, each of

which must then be tested to determine if it matches the

problem statement. Expert systems use heuristics to limit

the number of possible solutions generated, thus reducing

significantly the amount of time spent in testing.

DENDRAL, developed at Stanford, is a good example

of a heuristic search program. The task is to determine

the structure of a particular molecule when given

information about its component atoms and its mass

spectra. [Barr and Feigenbaum, 82] Heuristics provided

by expert chemists act as constraints, ruling out certain

structural features and requiring the presence of others.

The program is reported to perform at a level consistent

with, or better than, domain experts.

This is by no means a comprehensive survey of

expert system applications. As with any rapidly

developing technology, new uses appear on the scene regularly.

Some involve small systems which may not even deserve the

name "expert". Nevertheless they are useful in many

situations as an extension of or replacement for

human involvement. Monitoring industrial equipment

and processes is an example of this kind of application.
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3. DEVELOPMENTAIDS

The earliest expert systems were developed using
high level languages intended specifically for arti-
ficial intelligence applications, notably LISP. LISP
provides a great deal of flexibility in the way in-
formation can be organized and is expressly designed
to perform symbolic manipulations. Other AI languages
such as PROLOGhave also been used. Conventional
programming languages (FORTRAN, for example) are

oriented toward numerical processing and do not contain

many of the features which simplify the job of the AI

programmer.

In recent years the trend has been to provide

even more assistance than is available from special

purpose languages. Software tools developed expressly

for expert system development are now being marketed for

all size machines and in all price ranges. Most

commercially available expert system tools are LISP-

based, although some are written in PROLOG or PASCAL.

Tools are in general less flexible than high level

languages, but compensate for this loss of flexibility by

offering a variety of special features which simplify the

job of the knowledge engineer. Typically, these features

would include an inference engine, various aids to know-

ledge acquisition and knowledge representation, and utilities

to help with the development and debugging of the knowledge

base.

Small expert system shells are designed to run on

personal computers and support the development of systems

containing a few hundred rules. Most of these tools are

based on the diagnostic model, use backward chaining as

the primary control strategy, and represent facts as O-A-V

triples. Interaction with the user is through menus or

a question-and-answer format. Little support is provided

for knowledge engineering. Knowledge bases are typically

created outside of the system using a word processor,

although a few systems prompt for knowledge entry. Some

provide trace features that let the user watch the rules

as they fire. This is a useful method of debugging the

knowledge base. Examples of this class of tools are

ES/P ADVISOR (Expert Systems International), M.l

(Teknowledge, Inc.), and Personal Consultant (Texas

Instruments).

Large system building tools are much more powerful

than the simple aids discussed above. They run on large

computers or special LISP workstations and can be used to
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construct systems with several thousand rules. Instead of
offering a single paradigm, they provide an array of fea-
tures that can be used to customize a program to the
application. System builders can choose from several
different control strategies. Most common knowledge rep-
resentation schemes are available, including O-A-V triples,
frames, inheritance and certainty factors. Sophisticated
graphics capabilities aid in debugging and the design of
special screens. Such flexibility does not come without a
price, however. The knowledge engineer must be skilled in
the use of the tool and must be thoroughly familiar with
the task domain in order to choose the most suitable methods
out of the many that are offered. Software vendors usually
provide workshops or on-site consulting to train programmers
in the use of the tool. Examples of large expert system
tools are ART (Automatic Reasoning Tool) from Inference
Corp. and KEE (Knowledge Engineering Environment) from
IntelliCorp.

Expert system developers may employ different tools at
different stages. An initial prototype, which serves as a
proof-of-concept, might be built quickly with one of the
smaller expert system shells. The final prototype expands
on this preliminary version by augmenting the knowledge base,
providing graphic interfaces, and adding other features. A
large tool is typically required at this point. For additional
information on factors to consider in choosing a tool see
Citrenbaum, Geissman and Schultz. Surveys of some of the
current commercial tools are available from Harmon and King,
and Gevarter..(See references)

4. LIMITATIONS

The advantages of expert systems have been widely
advertised. They solve problems that have previously been
intractable to computer solution, using programs that can
evolve to keep pace with changes in the problem domain.
They provide expert advice and assistance to an entire
community of users, allowing human experts the freedom
to work on new problems. They reduce computationally
explosive tasks to a manageable size. The benefits of
expert system technology should not, however, blind
potential users to its limitations.

The heart of an expert system is its knowledge base
and this is also the source of many of its limitations.
Knowledge acquisition is a costly and time-consuming process,
requiring months on the part of expert and knowledge
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engineer alike. Once the knowledge base is built, the
problem becomes one of truth maintenance. As rules
are added over time, it becomes increasingly likely that
contradictions and inconsistencies will be introduced. Size
is also a problem; even modest systems may require many
hundreds of rules. One practical consequence of all this
is the necessity to restrict expert systems to narrow,
well-understood task domains. Current technology does not
support building the enormous knowledge bases that would
be needed to handle problems with a broader scope.

Reliability is also of critical concern. Most
systems employ a form of "shallow" reasoning; that is,
inferences are based on heuristics and empirical data
rather than being derived from domain axioms and
principles. As a result, such systems tend to perform
poorly when confronted with unexpected situations which
were not anticipated in the original design.

Other problems are a result of the need to interface
the system to humans, both during the building and opera-
tional phases of its lifetime. Ideally, one would like to
be able to enter rules and describe problems in English,
but in fact most systems still require the use of a
stylized and sometimes obscure knowledge representation
language.

Explanation facilities are limited in their ability
to justify system behavior. A typical explanation
consists of English translations of the rules involved
in reaching that conclusion. Definitions of terms, causal
relationships,and other potentially helpful information
cannot be presented since it is not represented in the
knowledge base.

An even more fundamental problem concerns the
basic nature of expertise. Many skeptics question whether
IF-THEN rules can fully capture the essence of an expert's
know-how. [Dreyfus, 86] They claim that while rule
based systems may be able to perform credibly in some
situations, true expertise operates on many levels and
cannot be reduced to an analytic process.
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CONCLUSION

In the last five to ten years interest in artificial
intelligence has increased dramatically. Established com-
panies are developing AI departments, government agencies
are investing enormous sums in AI research, and private
software firms specializing in AI products are prolifer-
ating. Most of this activity centers on expert systems
and related technology. Although there are still rela-
tively few workable systems in use today, many prototypes

are currently undergoing development and refinement.

It is reasonable to project that within the next

five years small, special purpose expert systems will

become common. Implemented on personal computers or as

specially designed micro chips, these systems could per-

form reliably in many situations. Programs to monitor

instruments and industrial machinery, to serve as

intelligent procedure manuals or training aids, and to

retrieve information from data bases are within the reach

of current technology. Many of these small systems will

be more appropriately called "competent" rather than

"expert". When (and whether) large, truly expert systems

will become widespread depends on the progress made by

AI researchers in a number of areas.

First, there must be significant improvements in

techniques of knowledge representation and knowledge

acquisition. New methods for incorporating causality and

domain principles into the reasoning process will enable

systems to handle novel situations and to better justify

their actions. Current research in computer learning

techniques offers great promise for the future. A

system which can learn domain rules by analyzing examples

provided by an expert will greatly simplify the process

of knowledge acquisition. Extrapolating even further,

one can imagine a system provided with basic domain

knowledge which will enable it to generate solutions by

trial-and-error; and which, by observing the results, is

able to derive its own rules independent of expert

assistance. Methods of incorporating general world know-

ledge and common sense knowledge would provide even more

human-like performance.

Currently there are ongoing research projects in all

of these areas. Although advances have been made there is

still much that remains to be done before significant
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results will appear. There are some who think that order-

of-magnitude improvements will not be possible unless new

computer architectures are developed. They argue that

today's sequential processing machines do not model the
working of the human brain closely enough to successfully

simulate intelligent behavior.

Regardless of whether expert systems are truly

intelligent or can be considered accurate models of human

expertise, it is becoming increasingly apparent that they
can, in fact, be an important aid to computational problem

solving. Existing systems have demonstrated the ability to

perform reliably when used in an appropriate context and

without unrealistic expectations. System designers who

are aware of the weaknesses o£ expert system technology as

well as of the advantages will be able to realize its full

potential.
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